3 鋰負(fù)極的改性
Peled在1979年首次提出SEI膜的概念,SEI膜的多相化學(xué)結(jié)構(gòu)對(duì)于金屬鋰電池的電鍍、剝離行為和循環(huán)壽命有著直接的影響,它是解決金屬鋰二次電池挑戰(zhàn)的重要方面。
根據(jù)目前的研究,通過(guò)改性SEI膜對(duì)鋰負(fù)極的改性思路主要有:(1)SEI膜主要成分是由負(fù)極鋰和電解質(zhì)的分解反應(yīng)產(chǎn)物構(gòu)成,通過(guò)改進(jìn)電解質(zhì)對(duì)SEI膜進(jìn)行原位改性是*直接高效的方法;(2)人工非原位在鋰負(fù)極表面形成一層SEI膜,操控更加靈活,方案更加簡(jiǎn)單經(jīng)濟(jì),有利于商業(yè)化。
3.1 通過(guò)電解質(zhì)原位改性SEI膜
通常鋰電池電解質(zhì)主要由有機(jī)溶劑、鋰鹽和添加劑構(gòu)成,幾乎所有的電解質(zhì)成分對(duì)SEI膜的形成有很重要的影響,所 以通過(guò)改進(jìn)電解質(zhì)的成分來(lái)形成穩(wěn)定的SEI膜是*直接高效的方法。
南京夏華電子有限公司生產(chǎn):蓄電池,鉛酸蓄電池,膠體蓄電池,太陽(yáng)能蓄電池,管型蓄電池,干電池,鋰電池,鎳氫電池,鎘鎳電池。
3.1.1 液體電解液
通常用的碳酸酯類電解液不能很好地抑制鋰枝晶的生長(zhǎng),電池的庫(kù)侖效率也較低。通常用的醚類電解液對(duì)鋰枝晶的抑制效果較好,但它們的離子導(dǎo)電性差,且具有較差的抗氧化能力,這些嚴(yán)重限制了其在高電壓正極中的應(yīng)用。所以,探索新的電解液體系以及尋找新型有機(jī)溶劑和鋰鹽是現(xiàn)在電解液研究工作中的主要任務(wù)。
邦力威(無(wú)錫)能源有限公司主要產(chǎn)品:寬溫鋰電池,三元材料鋰電池,特種鋰電池,電動(dòng)工具鋰電池,軌道交通鋰電池,6V鋰電池,12V鋰電池,24V鋰電池,36V鋰電池,48V鋰電池,60V鋰電池,72V鋰電池。
研究者們發(fā)現(xiàn)“高濃度鋰鹽”對(duì)形成穩(wěn)定SEI膜,進(jìn)而改善鋰負(fù)極有較顯著的效果。Hu等提出“溶劑溶于鋰鹽”的研究思路,有機(jī)溶劑為1,3- 二氧戊環(huán) (DOL)+乙二醇二甲醚(DME)(體積比 1:1),加入高濃度鋰鹽LiTFSI時(shí),鋰負(fù)極表面形成了穩(wěn)定SEI膜,溶液具有高的鋰離子遷移數(shù)(0.73),有效抑制了鋰枝晶的生長(zhǎng)和形狀變化,庫(kù)侖效率幾乎達(dá)到了100%。
匯眾閥控密封鉛酸蓄電池的電壓有2V,4V,6V,12V,24V,48V,60V,72V,110,220V,1.2V,3V,3.2V,3.6V,3.7V,11.1V,12.8V等
雙元鋰鹽對(duì)SEI膜改性也有較優(yōu)的效果,Xiang等以LiTFSI和LiBOB為雙元鋰鹽,EC+EMC(質(zhì)量比4:6)為有機(jī)溶劑。探索得出Li-LiNi0.8Co0.15Al0.05O2電池大電流充電時(shí),在只加LiPF6的電解液中形成的SEI膜較厚,阻抗較大,容量衰減較快。而在加LiTFSI和LiBOB雙鹽的電解液中,鋰負(fù)極表面會(huì)形成一層富含硫的高導(dǎo)電性SEI膜,電池在大電流循環(huán)過(guò)程中循環(huán)性能較好。
決定邦力威鋰電池壽命的主要因素有,正極板,負(fù)極板,電解液,隔板,控制板,使用環(huán)境,使用方法,充電方式,放電方式,保護(hù)設(shè)計(jì)等
之前研究已經(jīng)證明有機(jī)溶劑對(duì)SEI膜成分會(huì)起到*主要的影響,尋找新型有機(jī)溶劑,探索溶劑與鋰鹽的濃度比對(duì)改性鋰負(fù)極也至關(guān)重要。Miao等提出了一種新型醚基電解液,指出混合電解液之間相互協(xié)同的優(yōu)良性能。1,4-二氧六環(huán)(DX)和DME做有機(jī)溶劑,LiFSI做鋰鹽。DX的抗氧化性能較好,DME也具有較高的氧化穩(wěn)定性,所以這種混合電解液具有較寬的電化學(xué)穩(wěn)定窗口(≈4.87 V)。DX在各種醚基溶劑中還具有較低的還原電位,所以它與鋰負(fù)極的反應(yīng)活性較低,低電流密度循環(huán)200次,庫(kù)侖效率可以保持98%,沒(méi)有枝晶的生成。
常見(jiàn)邦力威鋰電池分類:錳酸鋰鋰電池,三元鋰電池,磷酸鐵鋰電池,聚合物鋰電池,鋰電池,鋰電池組,鋰離子蓄電池,圓柱鋰電池,方形鋰電池,18650鋰電池,26650鋰電池,低溫鋰電池。
3.1.2 電解液添加劑
電解液添加劑具有比溶劑和鹽更高的還原電位,可以迅速與鋰陽(yáng)極反應(yīng),并形成一個(gè)比有機(jī)溶劑和鋰鹽更穩(wěn)定、致密的SEI膜。添加劑有無(wú)機(jī)添加劑和有機(jī)添加劑兩大類,之前研究的無(wú)機(jī)添加劑主要有CO2、SO2、N2、HF等酸性氣體,Mg2+、Zn2+、I-、Ga3+、Bi3+、Sn4+等無(wú)機(jī)離子和SnI3、AlI3等碘化物。有機(jī)添加劑主要有氟代碳酸乙烯酯(FEC)、碳酸亞乙烯酯(VC)、亞硫酸乙二醇酯(ES)、四氫呋喃及其衍生物、萘烷、苯、聯(lián)吡啶類化合物、聚氧化乙烯(PEO)、PEO 的二甲醚、二甲基硅烷與 環(huán)氧丙烷的共聚物等。
南京夏華蓄電池容量小時(shí)率:1HR,2HR,3HR,5HR,8HR,10HR,20HR,100HR
當(dāng)今科研者們對(duì)含氟化合物又投入了一定量的工作,Kanamura等提出HF可以改善鋰沉積的表面形態(tài),抑制鋰枝晶的生長(zhǎng)。少量HF和H2O在碳酸酯溶劑中可使SEI膜生成致密均勻的LiF/Li2O薄層,促使鋰呈光滑半球形沉積,電流密度均勻分布,抑制鋰枝晶的生長(zhǎng)。*近Zhang等對(duì)添加劑FEC做了研究,FEC添加劑與負(fù)極鋰反應(yīng)活性較高,可實(shí)現(xiàn)富含LiF的SEI膜的生成,這種致密穩(wěn)定的SEI膜可有效抑制鋰枝晶的生長(zhǎng)。
夏華膠體蓄電池容量有0.7AH,1.9AH,3.3AH,4AH,5AH,7AH,10AH,12AH,18AH,20AH,22AH,33AH,30AH,40AH,51AH,50AH,65AH,100AH,120AH.
有機(jī)添加劑易被還原和聚合形成SEI膜,比無(wú)機(jī)添加劑形成的SEI膜具有更佳的柔韌性、粘附力、較強(qiáng)的機(jī)械性能、較高的離子傳導(dǎo)率和均勻的電流分布。較早研究的有機(jī)添加劑有VC和FEC,Inaba等把添加劑FEC和VC在電解液LiClO4/碳酸丙烯酯(PC)中作了對(duì)比,在添加劑FEC中形成的SEI膜比在VC中更致密,更具有彈性,阻抗較小,電流分布更加均勻,有效抑制了鋰枝晶的生長(zhǎng)。
南京夏華蓄電池容量小時(shí)率:1HR,2HR,3HR,5HR,8HR,10HR,20HR,100HR
3.1.3 離子液體
室溫離子液體有較寬的電化學(xué)穩(wěn)定窗口、不易燃、蒸氣壓低、電導(dǎo)率好、熱穩(wěn)定性好、不揮發(fā)等優(yōu)點(diǎn),有望取代傳統(tǒng)的碳酸酯類和醚類電解質(zhì)。當(dāng)前研究較多的離子液體主要有咪唑類、吡咯類、吡啶類、季胺類陽(yáng)離子和六氟磷酸、氟硼酸、磺酸及其衍生物陰離子。
近期Li等對(duì)Py13TFSI和醚基電解質(zhì)作為混合離子液體電解質(zhì)對(duì)鋰金屬陽(yáng)極電鍍和剝離的穩(wěn)定性的影響作了研究,鋰沉積和脫離的可逆性可以通過(guò)Py13TFSI離子液體和鋰鹽濃度之間的協(xié)同作用得到顯著增加,混合電解質(zhì)通過(guò)原位鈍化工藝提高SEI層的穩(wěn)定性,有效抑制了鋰電池循環(huán)過(guò)程中鋰枝晶的生長(zhǎng)和鋰電池負(fù)極的腐蝕。
無(wú)錫匯眾公司的主要產(chǎn)品有:鋰離子蓄電池,鋰電池,電池,鉛酸蓄電池,密封蓄電池,管形膠體蓄電池,OPZV膠體蓄電池,OPZV管形膠體蓄電池,直流屏蓄電池,電子秤蓄電池,EPS蓄電池,應(yīng)急電源電池,UPS蓄電池控制器,逆變器,太陽(yáng)能,太陽(yáng)能光伏板,逆變器蓄電池,太陽(yáng)能殺蟲(chóng)燈,太陽(yáng)能戶用電源,三輪車蓄電池,汽車蓄電池,電動(dòng)汽車電池,摩托車蓄電池,電動(dòng)車蓄電池